Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly

Kevin Zakka, Andy Zeng, Johnny Lee, Shuran Song

Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly

Kevin Zakka, Andy Zeng, Johnny Lee, Shuran Song

includes video narration

Shape Matching

Shape Matching

Shape Matching

Shape Matching

Shape Matching

state-of-the-art robo-kitting solution

state-of-the-art robo-kitting solution

state-of-the-art robo-kitting solution

require prior knowledge and manual engineering

state-of-the-art robo-kitting solution

require prior knowledge and manual engineering cannot quickly adapt to new objects and settings

robo-kitting solution

state-of-the-art

require prior knowledge and manual engineering
cannot quickly adapt to new objects and settings

can we endow them with generalization abilities?

Generalizable Assembly

Form2Fit

Kit Assembly → Shape Matching

Kit Assembly → Shape Matching

learns geometric shape descriptors

Kit Assembly → Shape Matching

learns geometric shape descriptors

Kit Assembly → Shape Matching

- learns geometric shape descriptors
- generalizes to new shapes

Kit Assembly → Shape Matching

- learns geometric shape descriptors
- generalizes to new shapes

Kit Assembly → Shape Matching

- learns geometric shape descriptors
- generalizes to new shapes

Assembly from **Disassembly**

fully self-supervised

Kit Assembly → Shape Matching

- learns geometric shape descriptors
- generalizes to new shapes

- fully self-supervised
- trial and error

Kit Assembly → Shape Matching

- learns geometric shape descriptors
- generalizes to new shapes

- fully self-supervised
- trial and error

Kit Assembly → Shape Matching

- learns geometric shape descriptors
- generalizes to new shapes

- fully self-supervised
- trial and error

Kit Assembly → Shape Matching

- learns geometric shape descriptors
- generalizes to new shapes

- fully self-supervised
- trial and error

Nethod

grayscale-depth heightmaps are generated from 3D pointcloud data

Kit Heightmap

grayscale-depth heightmaps are generated from 3D pointcloud data

Kit Heightmap

suction network ingests object heightmap and outputs suction heatmap

Kit Heightmap

Object Heightmap

Suction Network

suction network ingests object heightmap and outputs suction heatmap

Object Heightmap

Suction Network

suction network ingests object heightmap and outputs suction heatmap

Object Heightmap

Suction Network

place network ingests kit heightmap and outputs place heatmap

Object Heightmap

Suction Network

place network ingests kit heightmap and outputs place heatmap

Object Heightmap

Suction Network

place network ingests kit heightmap and outputs place heatmap

Kit Heightmap

Object Heightmap

Suction Network

Kit Heightmap

Object Heightmap

Suction Network

Kit Heightmap

Object Heightmap

Suction Network

Object Heightmap

Suction Network

Kit Heightmap

Object Heightmap

Suction Network

Kit Heightmap

Place Network

Object Heightmap

Suction Network

Object Heightmap

Suction Network

matching network ingests heightmaps and outputs descriptor maps

matching network ingests heightmaps and outputs descriptor maps

Data Collection

Data Collection

500 disassembly sequence (~ 8 to 10 hours) for each kit

Data Collection

500 disassembly sequence (~ 8 to 10 hours) for each kit

suction network predicts a suction candidate

suction network predicts a suction candidate

suction network predicts a suction candidate

place pose randomly generated (q, θ)

place pose randomly generated (q, θ)

place pose randomly generated (q, θ)

kit is secured to table to prevent accidental displacement from bad suction grasps

kit is secured to table to prevent accidental displacement from bad suction grasps

place point ground-truth obtained from suction

place point ground-truth obtained from suction

place point ground-truth obtained from suction

suction point ground-truth obtained from place

suction point ground-truth obtained from place

suction point ground-truth obtained from place

dense correspondence ground-truth obtained from robot motion

dense correspondence ground-truth obtained from robot motion

Results

model trained on 2 kits: floss and tape

Individual

model trained on 2 kits: floss and tape

Individual

model trained on 2 kits: floss and tape

Multiple

Individual

model trained on 2 kits: floss and tape

Multiple

Mixture

never before seen animals

never before seen animals

What Has Form2Fit Learned?

descriptors encode object orientation

descriptors encode object orientation

descriptors encode object orientation

descriptors encode spatial correspondence

descriptors encode spatial correspondence

Descriptor Visualization

descriptors encode object identity

Descriptor Visualization

descriptors encode object identity

Limitations & Future Work

Typical Failure Case

180° rotational flips

Typical Failure Case

180° rotational flips

restricted to planar manipulations

restricted to planar manipulations

- restricted to planar manipulations

can't handle fully-transparent objects

- quasi-static environment
- restricted to planar manipulations can't handle fully-transparent objects time-reversal currently restricted to

Form2Fit:

Learning Shape Priors for Generalizable Assembly from Disassembly

Kevin Zakka^{1,2}, Andy Zeng^{2,3}, Johnny Lee², Shuran Song^{2,4} ¹Stanford University ²Google ³Columbia University

Abstract-Is it possible to learn policies for robotic assembly that can generalize to new objects? We explore this idea in the context of the kit assembly task. Since classic methods rely heavily on object pose estimation, they often struggle to generalize to new objects without 3D CAD models or taskspecific training data. In this work, we propose to formulate the kit assembly task as a shape matching problem, where the goal is to learn a shape descriptor that establishes geometric correspondences between object surfaces and their target placement locations from visual input. This formulation enables the model to acquire a broader understanding of how shapes and surfaces fit together for assembly - allowing it to generalize to new objects and kits. To obtain training data for our model, we present a self-supervised data-collection pipeline that obtains ground truth object-to-placement correspondences by disassembling complete kits. Our resulting real-world system, Form2Fit, learns effective pick and place strategies for assembling objects into a variety of kits - achieving 90% average success rates under different initial conditions (e.g. varying object and kit poses), 94% success under new configurations of multiple kits, and over 86% success with completely new objects and kits. Code, videos, and supplemental material are available at https://form2lit.github.io1

I. INTRODUCTION

Across many assembly tasks, the shape of an object can often inform how it should be fitted with other parts. For example, in kit assembly (*i.e.*, placing object(s) into a blister pack or corrugated display to form a single unit – see examples in Fig. 1), the profile of an object likely matches

Z - 🖹 🛞 Q 1

Fig. 1. Form2Fit learns to assemble a wide variety of kits by finding geometric correspondences between object surfaces and their target placement locations. By leveraging data-driven shape priors learned from multiple kits during training, the system generalizes to new objects and kits.

place formulation for kit assembly that leverages shape priors for generalization. Form2Fit has two key aspects:

 Shape-driven assembly for generalization. We establish geometric correspondences between object surfaces and

For details, videos and code, visit:

https://form2fit.github.io

Form2Fit: Learning Shape Priors for Generalizable Assembly

from Self-Supervised Disassembly

Paper	Video	Code

Is it possible to learn policies for **robotic assembly** that can generalize to new objects? In this work, we propose to formulate the kit assembly task as a shape matching problem, where the goal is to learn a **shape descriptor** that establishes geometric correspondences between object surfaces and their target placement locations from visual input. This formulation enables the model to acquire a broader understanding of how shapes and surfaces fit together for assembly — allowing it to generalize to new objects and kits. To obtain training data for our model, we present a **self-supervised** data-collection pipeline that obtains ground truth object-to-placement correspondences by disassembling complete kits. Our resulting real-world system, **form2Fit**, learns effective pick and place strategies for assembling objects into a variety of kits — achieving 90% average success rates under different initial conditions (e.g. varying object and kit poses), 94% success under new configurations of multiple kits, and over 86% success with completely new objects and kits.

