Supplementary Material for Form2Fit: Learning Shape Priors for
Generalizable Assembly from Disassembly

Kevin Zakka'?, Andy Zeng?, Johnny Lee?, Shuran Song”~
IStanford University 2Google >Columbia University
https://form2fit.github.io/

This document contains additional details on the represen-
tations, network architecture, model training, data collection
and experiments. Our models are trained from scratch in
PyTorch with an NVIDIA Titan V on an Intel Xeon E-2136
6-core processor clocked at 3.3GHz.

1. VISUAL REPRESENTATION

The PhoXi sensor outputs a 32-bit intensity map and a 32-
bit depth map at 1 FPS. We convert the intensity map to an
8-bit grayscale image and normalize the depth map to meters.
Grayscale and depth images are converted to heightmaps
(Fig. 1) and used as visual representations for our system.

Fig. 1: Example of an intensity image (left) captured by
the PhoXi sensor and its equivalent heightmap representation
(right).

We perform background subtraction on the resulting
heightmaps using the depth image. Empirically, we observe
that this helps reduce overfitting.

II. NETWORK ARCHITECTURE

The three parameterized modules of Form2Fit (i.e., suc-
tion, place and matching) use the same neural network
architecture: a 20-layer, fully-convolutional, dilated residual
network ([1], [2], [3]) as shown in Table 1. The residual block
consists of two Conv3x3-BatchNorm-ReLU operators with a
skip-connection as defined in [1].

The matching network is a Siamese variant with shared
weights for both input streams. We feed it a batch of 20
rotations of the kit heightmap I;; for the first stream, and
the object heightmap Iy, for the second stream. Thus, for
a single data point, the matching network has an effective
batch size of 21.

III. LoSS FUNCTIONS

Suction and place networks. Suction and place networks
are trained with the weighted sum of two loss functions: a
binary cross entropy loss with a coefficient of 1 and a dice

loss with a coefficient of 5. The dice loss naturally helps
account for class imbalance and we observe that it produces
more concentrated heatmaps. We note that the data collection
process generates single ground truth suction and place pixels
(i.e., p and q). We can artificially increase their number by
creating a radius r of pixels centered at p and q and passing
gradients through the pixels within this radius. All other
pixels backpropagate with 0 loss. We set the hyperparameter
r==6.

Matching network. The matching module is trained using
a pixel-wise contrastive loss, where for every pair of kit
and object heightmaps (ki onj), we sample non-matches
from Ip; and all 20 rotations of /i and matches from
Iop; but only the rotation j of I corresponding to the
ground-truth angle. The loss function thus encourages
descriptors to match solely at the correct rotation of the kit
image while non-matches are pushed to be at least a feature
distance margin M apart. In our experiments, the margin
parameter M = 8. At each training iteration, we sample
match and non-matches with a 1:5 ratio and compute the

loss: & = gmatch + ZLhonmarch Where jmatch(lkitalobj) =

N Eoen [l i — Hobiills and Lhionmateh (fies Lobj) =

1 J 2
N L ez je[1.20] EiNponmaren 13X (0, M — [11 ; — Hobi.ill2)
We couple the contrastive loss with hard negative mining

and find that it is crucial for successful training.

IV. DATA COLLECTION & TRAINING DETAILS

Suction network pretraining. We start by pretraining a
suction network for each kit on a small dataset of manually
collected demonstrations. We find that it is way more cost-
efficient to collect a few demonstrations and bootstrap the
learning than starting from a randomly initialized policy.
Each demonstration corresponds to one object disassem-
bly (e.g. disassembling the deodorant kit once produces 5
demonstrations). One demonstration produces two suction
labels (1 when the object is inside the kit, 1 when the object
is on the table) effectively doubling the dataset size. We
observe that ~ 50 demonstrations, augmented with random
rotations and translations and trained for 75 epochs, is
sufficient to train a network that can produce accurate suction
affordances.

Online learning. After the pretraining, we plug the suction
network into the automatic data collection pipeline and it
continues to learn from trial and error using the suction
action as a reward signal. We store the trajectories in a

https://form2fit.github.io/

—— ORB-PE
0.0 Form2Fit

—— ORB-PE
Form2Fit

— ORB-PE

Form2fit | {1 Form2Ft

000 002 004 006 008 010 012 014 3 25 50 75 100 125 150 175 200
Translation Threshold (m) Rotation Angle Threshold [deg]

0.00 002 0.04

0.06 0.08 010 [5 10
Average Distance Threshold (m]

15 20 25 30
Reprojection Threshold (heightmap pix]

Fig. 2: Our method (Form2Fit) outperforms the baseline alternative.

database and train with prioritized experience replay [4]
using stochastic rank-based prioritization, approximated with
a power-law distribution.

Matching and placing network training. Once all the data
has been gathered, we train the remaining matching and place
networks from scratch (i.e., random initialization) for 500
and 200 epochs respectively. All networks are trained with
Adam [5] using a fixed learning rate of 1074, B; = 0.9, B, =
0.999 and a weight decay of 3 x 107%. The place network
is trained with a batch size of 8 and the matching network
with a batch size of 1 (i.e., equivalent to 21).

Data augmentation. We sample a rotation angle uniformly
at random from [0°,360°], then determine the maximum
bounds on translation we can apply without transforming the
objects or kit outside the heightmap. Once the bounds are
computed, we uniformly sample x and y axis translations
and construct the corresponding random affine transform.
All three networks employ this data augmentation scheme.
Note that for the matching network, we only apply random
rotations to the kit heightmap and leave the object heightmap
untouched.

V. BASELINE DETAILS

The ORB-PE baseline method uses ORB descriptors with
RANSAC to estimate the ground-truth poses. Specifically,
for every image in the training set collected from automatic
disassembly, we use OpenCV [6] to detect and compute ORB
features which we store in a database. Then, for every query
test image in the benchmark, we compute ORB features for
the query image and find matches to every descriptor stored
in the database using brute force. This allows us to select an
image from the training set whose matches are the closest
to the query image (where the closeness metric used is the
Hamming distance).

Next, we project the matches of the query image and the
train image to 3D points in world coordinates, and estimate
the rigid transform between both point sets. Finally, we
use the train image’s ground truth pose in conjunction with
the estimated rigid transform to compute the predicted pose
Tpred = Tirain Trigid-

We use the Average Distance (ADD) metric to evaluate
the performance of ORB-PE and Form2Fit. Given the ground
truth rotation R and translation T and the predicted rotation
R and translation 7', the average distance metric computes
the average pairwise distance between the object point cloud

Heightmap x € R360%323x2
Conv3x3(2, 64) - BatchNorm(64)
MaxPool2d(3, 2, 1)
ResBlockDown(64, 128)
MaxPool2d(3, 2, 1)
ResBlockDown(128, 256)
ResBlockDown(256, 512)

(a) Encoder

ResBlockUp(512, 256)
ResBlockUp(256, 128)

Interpolate(2, “bilinear”)
ResBlockUp(128, 64)
Interpolate(2, “bilinear”)

Convix1(64, d)

(b) Decoder

TABLE I: The fully-convolutional encoder-decoder archi-
tecture for all three modules. ReLU nonlinearity is omitted
for the sake of brevity.

transformed according to the ground truth pose and the
estimated one. Concretely,

ApD =1 Y (Rx+T)— (Rx+T)|]
m cem
By comparing the computed ADD to various thresholds,
we can plot an accuracy vs threshold curve, visualized in
Fig. 2. We observe similar performance in the very low
distance tolerance regime (0-0.5 cm) beyond which Form2Fit
outperforms the baseline.

VI. PLANNER DETAILS

The planner integrates information from all three net-
works to produce the final pose estimate. It does so by
considering a large number of suction and place candidate
pairs across all kit rotations. Because the Cartesian product
of candidate pairs grows exponentially with the number of
candidates, a tradeoff between planner speed and accuracy
can be controlled through the sampling hyperparameter. In

our experiments, this translates to an execution time that can
range from just a few milliseconds to roughly 20 seconds at
extremely dense sampling.

Fig. 3: Example rotational flips that fit in the kit but are
counted as unsuccessful assemblies.

VII. ROTATION DISCRETIZATION

To choose the number of rotations in the matching net-
work, we had to tradeoff speed and memory costs with
place accuracy. A higher rotation count meant a larger
batch size (i.e., increase in memory) and longer computation
times when forwarding through the matching network and
sampling with the planner. We initially tried discretizing 360
degrees into 16 different rotation angles but found that it led
to frequent place errors, especially with tighter object ge-
ometries that were unforgiving to rotation inaccuracies. With
a discretization of 20 angles, the decrease in placing error
was cut down significantly while still having manageable
computation times and memory costs.

VIII. HYPERPARAMETERS

We performed various hyperparameter sweeps:

« We swept the descriptor dimension d through
[3,5,8,32,64,128] and selected 64. We find that for
values below 64, the network is over-constrained and
learning is crippled. For higher values, while the perfor-
mance is similar, memory usage is higher and training
convergence is slower.

o« We swept the contrastive loss margin parameter M
through [1,2,5,8,10] and selected 8. Lower values do
not produce descriptors that are distinct enough for
assembly.

o« We swept the batch size for the matching network
through [1,16,32,64]. We find that increasing the batch
size doesn’t have a very noticeable effect on final
performance.

IX. NEGATIVE RESULTS

We explored various techniques which we ended up dis-
carding due to performance degradation or lack thereof. We
report them to give a more complete picture of our attempts.

o We tried to train the matching network with a triplet loss
but found that it produced significantly worse matching
network performance.

« We found that increasing the spatial resolution of
the heightmaps significantly helped performance. We

changed it from an initial value of 0.003 to 0.002, i.e.,
each pixel ended up representing 0.002 meters.

« We tried background randomization and blacking out
random objects in the heightmap when training the
matching network. We found that it had a negligible
effect on performance.

o We tried data augmentation (i.e., random affine trans-
formation) on the object heightmap but found that it
degraded performance. Augmenting the kit heightmap
did however help.

o We tried adding skip connections from the encoder to
the decoder but found that it had little to no effect on
performance.

o We tried a SIFT-based baseline instead of ORB but it
performed significantly worse. We think this is due to
the fact that we use grayscale heightmaps and not RGB
images.

REFERENCES

[11 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[3] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 472—480.

[4] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” International Conference on Learning Representations, vol.
2016, 2016.

[5] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[6] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

	Visual Representation
	Network Architecture
	Loss Functions
	Data Collection & Training Details
	Baseline Details
	Planner Details
	Hyperparameters
	Negative Results
	References

